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1 Introduction 
 
This report describes the theory underlying the Discharge of a Pressure Vessel web application. The 
web application calculates the fall in gas pressure in the vessel with time when the valve at the end of 
the vessel is opened. You can find the application at the web address 
https://atkinsonscience.co.uk/WebApps/Aerospace/PressureVessel.aspx. 
 
The web application calculates the fall in pressure when (a) there is no heat transfer through the vessel 
wall to the gas during the discharge (adiabatic discharge), and when (b) the temperature of the gas 
remains constant (isothermal discharge). The assumption of adiabatic discharge is best suited to the 
case of very rapid discharge in which there is little time for heat transfer to take place through the vessel 
wall and the assumption of isothermal discharge is best suited to the case of very slow discharge. 
 
In most cases the pressure in the vessel will be so high that the flow will choke after the valve is opened, 
then after the pressure has dropped sufficiently the flow will unchoke. The web application calculates 
the fall in pressure in the vessel during the period of choked flow and during the period of unchoked 
flow. 
 

1.1 Pressure vessel 
 
The pressure vessel is shown in Figure 1. The vessel has volume 𝑉𝑉 and cross-sectional area 𝐴𝐴. The end 
of the vessel tapers to a hole of area 𝐴𝐴𝑒𝑒 through which the gas discharges. 
 
 
Figure 1  Pressure vessel 

 
 
 
 
 
 
  

 

𝐴𝐴𝑒𝑒 𝐴𝐴 𝑉𝑉 

https://atkinsonscience.co.uk/WebApps/Aerospace/PressureVessel.aspx
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1.2 Steady isentropic flow 
 
To analyse the discharge from the pressure vessel, we shall require some results for steady, isentropic 
flow of a perfect gas. The derivation of these results can be found in any standard textbook on 
thermodynamics, such as Refs. [1] and [2]. 
 
Figure 2 shows flow streamlines in a duct of varying cross-sectional area. We shall assume that the fluid 
is a perfect gas with constant specific heats and that the flow is steady. Also, we shall assume that the 
flow is adiabatic and frictionless (isentropic). Under these circumstances, the thermodynamic and flow 
properties at points 1 and 2 along a streamline are related to each other by the following equations: 
 

ℎ2 +
𝑢𝑢22

2
= ℎ1 +

𝑢𝑢12

2
      (1.1) 

 
𝑝𝑝2
𝑝𝑝1

= �
𝜌𝜌2
𝜌𝜌1
�
𝛾𝛾

= �
𝑇𝑇2
𝑇𝑇1
�

𝛾𝛾
𝛾𝛾−1

= �
𝑎𝑎2
𝑎𝑎1
�
2𝛾𝛾
𝛾𝛾−1

      (1.2) 

 
where h [J kg−1] is the specific enthalpy, 𝑢𝑢 [m s−1] is the flow speed, 𝑝𝑝 [Pa] is the pressure, 𝜌𝜌 [kg m−3] 
is the density, 𝑇𝑇 [K] is the temperature, 𝑎𝑎 [m s−1] is the speed of sound, and 𝛾𝛾 is the ratio of the specific 
heats of the gas. The speed of sound is given by 
 

𝑎𝑎2 = 𝛾𝛾𝛾𝛾𝑇𝑇 = (𝛾𝛾 − 1)ℎ      (1.3) 
 
where 𝛾𝛾 [J kg−1 K−1] is the specific gas constant of the gas. 
 
 
Figure 2  Flow streamlines in a duct 

 
 
 
 
  

1 2 
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1.3 Converging nozzle    
 
We shall assume that the end of the vessel through which the gas discharges resembles a converging 
nozzle. To analyse the discharge of the vessel, we shall require some results for steady, isentropic flow 
of a perfect gas through a converging nozzle. 
 
If the pressure in the vessel is high enough compared with the pressure beyond the end of the nozzle 
(the back pressure 𝑝𝑝𝑏𝑏) then the flow leaving the nozzle will reach sonic speed (Mach no. = 1) and the 
flow will be choked. During choked flow the rate of discharge depends only on the pressure and 
temperature upstream of the nozzle and the cross-sectional area of the end of the nozzle 𝐴𝐴𝑒𝑒 and is 
independent of the back pressure. As the pressure in the vessel falls, the ratio of the back pressure to 
the gas pressure rises. Once this ratio reaches the critical ratio the flow unchokes and the rate of 
discharge then depends on the back pressure as well as the pressure and temperature upstream of the 
nozzle. 
 

1.3.1 Choked flow 
 
To analyse the discharge of the pressure vessel, we shall need expressions for the mass flow rate of gas 
through a converging nozzle during choked flow and unchoked flow. An analysis of steady, isentropic 
flow of a perfect gas through a converging nozzle can be found in most standard textbooks on 
thermodynamics for the case of choked flow. The mass flow rate is given by 
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑝𝑝𝐴𝐴𝑒𝑒
√𝑇𝑇

�𝛾𝛾
𝛾𝛾
�

2
𝛾𝛾 + 1

�
(𝛾𝛾+1)/(𝛾𝛾−1)

      (1.4) 

 
and the critical pressure ratio is given by 
 

𝑝𝑝𝑏𝑏
𝑝𝑝

= �
2

𝛾𝛾 + 1
�

𝛾𝛾
𝛾𝛾−1

      (1.5) 

 
The pressure 𝑝𝑝 and temperature 𝑇𝑇 in (1.4) are the stagnation or reservoir pressure and temperature in 
the vessel, respectively, but since the velocity through the area 𝐴𝐴 is very small, we can take them to be 
the static pressure and static temperature over 𝐴𝐴. For air 𝛾𝛾 = 1.4 and 𝑝𝑝𝑏𝑏/𝑝𝑝 = 0.52828. 
 

1.3.2 Unchoked flow 
 
The case of unchoked flow is rarely covered in standard thermodynamics textbooks. We have therefore 
provided the necessary analysis in this report. 
 
Figure 3 shows a converging nozzle with inlet area 𝐴𝐴 and exit area 𝐴𝐴𝑒𝑒. The flow through the nozzle is 
steady and isentropic with properties 𝑝𝑝, 𝑇𝑇, 𝑢𝑢, etc. at the inlet and 𝑝𝑝𝑒𝑒, 𝑇𝑇𝑒𝑒, 𝑢𝑢𝑒𝑒, etc. at the exit. For unchoked 
flow we can assume that the exit pressure 𝑝𝑝𝑒𝑒 is equal to the back pressure 𝑝𝑝𝑏𝑏. 
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Figure 3  Converging nozzle 

 
 
 
The flow through the nozzle is steady, so for continuity the mass flow rate at the exit and the mass flow 
rate at the inlet must be equal: 
 

�̇�𝑑𝑒𝑒 = �̇�𝑑       (1.6) 
 
The mass flow rate at the exit �̇�𝑑𝑒𝑒 is 𝜌𝜌𝑒𝑒 𝑢𝑢𝑒𝑒 𝐴𝐴𝑒𝑒 and the mass flow rate at the inlet �̇�𝑑 is 𝜌𝜌 𝑢𝑢 𝐴𝐴. Hence we 
can write (1.6) as 
 

𝜌𝜌𝑒𝑒𝑢𝑢𝑒𝑒𝐴𝐴𝑒𝑒 = 𝜌𝜌𝑢𝑢𝐴𝐴 
 
or 
 

𝐴𝐴𝑒𝑒
𝐴𝐴

=
𝜌𝜌
𝜌𝜌𝑒𝑒

𝑢𝑢
𝑢𝑢𝑒𝑒

      (1.7) 

 
The flow through the nozzle is assumed to be isentropic, so along the streamlines from the inlet to the 
exit the flow properties satisfy equations (1.1) to (1.3). From (1.2), 
 

𝜌𝜌
𝜌𝜌𝑒𝑒

= �
𝑎𝑎
𝑎𝑎𝑒𝑒
�

2
𝛾𝛾−1

 

 
so (1.7) can be written 
 

𝐴𝐴𝑒𝑒
𝐴𝐴

= �
𝑎𝑎
𝑎𝑎𝑒𝑒
�

2
𝛾𝛾−1 𝑢𝑢

𝑢𝑢𝑒𝑒
  

 
or 
 

𝑢𝑢𝑒𝑒2 = 𝑢𝑢2 �
𝑎𝑎
𝑎𝑎𝑒𝑒
�

4
𝛾𝛾−1

�
𝐴𝐴
𝐴𝐴𝑒𝑒
�
2

     (1.8) 

 
 
  

 

𝐴𝐴𝑒𝑒, 𝑝𝑝𝑒𝑒, 𝑇𝑇𝑒𝑒, 𝑢𝑢𝑒𝑒 𝐴𝐴, 𝑝𝑝, 𝑇𝑇, 𝑢𝑢 
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From equation (1.1) 
 

ℎ𝑒𝑒 +
𝑢𝑢𝑒𝑒2

2
= ℎ +

𝑢𝑢2

2
 

 
From (1.3), h = 𝑎𝑎2/(𝛾𝛾−1), so we can write the preceding equation as 
 

𝑎𝑎𝑒𝑒2

𝛾𝛾 − 1
+
𝑢𝑢𝑒𝑒2

2
=

𝑎𝑎2

𝛾𝛾 − 1
+
𝑢𝑢2

2
 

 
We can eliminate 𝑢𝑢𝑒𝑒 from this equation by substituting (1.8): 
 

𝑎𝑎𝑒𝑒2

𝛾𝛾 − 1
+
𝑢𝑢2

2
�
𝑎𝑎
𝑎𝑎𝑒𝑒
�

4
𝛾𝛾−1

�
𝐴𝐴
𝐴𝐴𝑒𝑒
�
2

=
𝑎𝑎2

𝛾𝛾 − 1
+
𝑢𝑢2

2
 

 
Multiplying through by 2/𝑎𝑎𝑒𝑒2 gives 
 

2
𝛾𝛾 − 1

+ �
𝑢𝑢
𝑎𝑎𝑒𝑒
�
2
�
𝑎𝑎
𝑎𝑎𝑒𝑒
�

4
𝛾𝛾−1

�
𝐴𝐴
𝐴𝐴𝑒𝑒
�
2

=
2

𝛾𝛾 − 1
�
𝑎𝑎
𝑎𝑎𝑒𝑒
�
2

+ �
𝑢𝑢
𝑎𝑎𝑒𝑒
�
2
 

 
and rearranging this equation gives 
 

�
𝑢𝑢
𝑎𝑎𝑒𝑒
�
2

=

2
𝛾𝛾 − 1 �

𝐴𝐴𝑒𝑒
𝐴𝐴 �

2
�� 𝑎𝑎𝑎𝑎𝑒𝑒

�
2
− 1�

� 𝑎𝑎𝑎𝑎𝑒𝑒
�

4
𝛾𝛾−1 − �𝐴𝐴𝑒𝑒𝐴𝐴 �

2
      (1.9) 

 
From equation (1.2), 
 

𝑎𝑎
𝑎𝑎𝑒𝑒

= �
𝑝𝑝
𝑝𝑝𝑒𝑒
�
𝛾𝛾−1
2𝛾𝛾

 

 
Substituting this equation into (1.9) gives 
 

�
𝑢𝑢
𝑎𝑎𝑒𝑒
�
2

=

2
𝛾𝛾 − 1 �

𝐴𝐴𝑒𝑒
𝐴𝐴 �

2
�� 𝑝𝑝𝑝𝑝𝑒𝑒

�
𝛾𝛾−1
𝛾𝛾 − 1�

� 𝑝𝑝𝑝𝑝𝑒𝑒
�
2
𝛾𝛾 − �𝐴𝐴𝑒𝑒𝐴𝐴 �

2
 

 
and taking the square root of both sides gives 
 

𝑢𝑢 = 𝑎𝑎𝑒𝑒

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�⃓

2
𝛾𝛾 − 1 �

𝐴𝐴𝑒𝑒
𝐴𝐴 �

2
�� 𝑝𝑝𝑝𝑝𝑒𝑒

�
𝛾𝛾−1
𝛾𝛾 − 1�

� 𝑝𝑝𝑝𝑝𝑒𝑒
�
2
𝛾𝛾 − �𝐴𝐴𝑒𝑒𝐴𝐴 �

2
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The mass flow rate from the nozzle, �̇�𝑑 = 𝜌𝜌 𝑢𝑢 𝐴𝐴, is therefore 
 

�̇�𝑑 = 𝜌𝜌𝐴𝐴𝑎𝑎𝑒𝑒

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�⃓

2
𝛾𝛾 − 1 �

𝐴𝐴𝑒𝑒
𝐴𝐴 �

2
�� 𝑝𝑝𝑝𝑝𝑒𝑒

�
𝛾𝛾−1
𝛾𝛾 − 1�

� 𝑝𝑝𝑝𝑝𝑒𝑒
�
2
𝛾𝛾 − �𝐴𝐴𝑒𝑒𝐴𝐴 �

2
      (1.10) 
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2 Choked adiabatic discharge 
 
We shall now consider the rate at which the pressure in the vessel falls when the discharge is choked 
and adiabatic. The gas in the pressure vessel is assumed to be a perfect gas, so at any instant it obeys 
the equation of state 
 

𝑝𝑝𝑉𝑉 = 𝑑𝑑𝛾𝛾𝑇𝑇      (2.1) 
 
where 𝑝𝑝 [Pa] is the gas pressure, 𝑉𝑉 [m3] is the internal volume of the vessel, 𝑑𝑑 [kg] is the mass of the 
gas, 𝛾𝛾 [J kg−1 K−1] is the specific gas constant of the gas, and 𝑇𝑇 [K] is the temperature of the gas. 
 
Differentiating (2.1) with respect to time 𝑑𝑑 [s] gives 
 

𝑉𝑉
𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝛾𝛾
𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

+ 𝛾𝛾𝑇𝑇
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

      (2.2) 
 
since 𝑉𝑉 and 𝛾𝛾 are constant. The term 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 [kg s−1] is the rate at which the gas is evacuated from the 
vessel. Before we can integrate (2.2) to find the gas pressure 𝑝𝑝 as a function of time 𝑑𝑑, we must find 
expressions for 𝑑𝑑𝑇𝑇/𝑑𝑑𝑑𝑑 and 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 in terms of 𝑝𝑝 and 𝑑𝑑. 
 
𝑑𝑑𝑇𝑇/𝑑𝑑𝑑𝑑 
 
For an isentropic process involving a perfect gas we can apply (1.2): 
 

𝑇𝑇𝑝𝑝(1−𝛾𝛾)/𝛾𝛾 = 𝐶𝐶 
 
where 𝐶𝐶 is a constant. Taking the natural logarithm of both sides of this equation gives 
 

ln�𝑇𝑇𝑝𝑝(1−𝛾𝛾)/𝛾𝛾� = ln 𝐶𝐶 
 
or 
 

ln 𝑇𝑇 +
1 − 𝛾𝛾
𝛾𝛾

ln 𝑝𝑝 = ln 𝐶𝐶 

 
Differentiating this equation with respect to 𝑑𝑑 gives 
 

1
𝑇𝑇
𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

+
1 − 𝛾𝛾
𝛾𝛾

1
𝑝𝑝
𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

= 0 

 
or 
 

𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

=
𝛾𝛾 − 1
𝛾𝛾

𝑇𝑇
𝑝𝑝
𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

      (2.3) 

 
 
 
 
  



ATKINSON SCIENCE LIMITED  THEORY GUIDE 

12 
 

𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 
 
Although the flow from the vessel is unsteady, we shall assume that flow through the exit nozzle can 
be taken as quasi-steady. We can then use the choked flow equation (1.4) to represent the instantaneous 
mass flow rate 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = �̇�𝑑: 
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −
𝑝𝑝𝐴𝐴𝑒𝑒
√𝑇𝑇

�𝛾𝛾
𝛾𝛾
�

2
𝛾𝛾 + 1

�
(𝛾𝛾+1)/(𝛾𝛾−1)

 

 
Note that the negative sign appears in front of the right-hand side of this equation because the volume 
𝑉𝑉 is losing mass 
 
𝑑𝑑𝑝𝑝/𝑑𝑑𝑑𝑑 
 
We can now substitute (2.3) and (1.4) into (2.2) to obtain an expression for 𝑑𝑑𝑝𝑝/𝑑𝑑𝑑𝑑: 
 

𝑉𝑉
𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝛾𝛾
𝛾𝛾 − 1
𝛾𝛾

𝑇𝑇
𝑝𝑝
𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

− 𝛾𝛾√𝑇𝑇𝑝𝑝𝐴𝐴𝑒𝑒�
𝛾𝛾
𝛾𝛾
�

2
𝛾𝛾 + 1

�
(𝛾𝛾+1)/(𝛾𝛾−1)

      (2.4) 

 
The term 𝑑𝑑𝛾𝛾𝑇𝑇/𝑝𝑝 in (2.4) is equal to 𝑉𝑉. Also, from (1.2) we can write 
 

𝑇𝑇 = 𝑇𝑇𝑖𝑖 �
𝑝𝑝
𝑝𝑝𝑖𝑖
�

(𝛾𝛾−1)/𝛾𝛾
 

 
where 𝑇𝑇𝑖𝑖 and 𝑝𝑝𝑖𝑖 are the initial temperature and pressure in the vessel, respectively. Substituting these 
relations into (2.4) gives 
 

𝑉𝑉 �1 −
𝛾𝛾 − 1
𝛾𝛾 �

𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

= −𝐴𝐴𝑒𝑒�𝑇𝑇𝑖𝑖𝑝𝑝 �
𝑝𝑝
𝑝𝑝𝑖𝑖
�

(𝛾𝛾−1)/2𝛾𝛾
�𝛾𝛾𝛾𝛾 �

2
𝛾𝛾 + 1

�
(𝛾𝛾+1)/(𝛾𝛾−1)

 

 
or 
 

𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

= −
𝛾𝛾𝐴𝐴𝑒𝑒�𝑇𝑇𝑖𝑖

𝑉𝑉𝑝𝑝𝑖𝑖
(𝛾𝛾−1)/2𝛾𝛾

�𝛾𝛾𝛾𝛾 �
2

𝛾𝛾 + 1
�

(𝛾𝛾+1)/(𝛾𝛾−1)

𝑝𝑝(3𝛾𝛾−1)/2𝛾𝛾 

 
 
or 
 

𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

= −𝐷𝐷𝑝𝑝(3𝛾𝛾−1)/2𝛾𝛾       (2.5) 
 
where 𝐷𝐷 is a constant and 
 

𝐷𝐷 =
𝛾𝛾𝐴𝐴𝑒𝑒�𝑇𝑇𝑖𝑖

𝑉𝑉𝑝𝑝𝑖𝑖
(𝛾𝛾−1)/2𝛾𝛾

�𝛾𝛾𝛾𝛾 �
2

𝛾𝛾 + 1
�

(𝛾𝛾+1)/(𝛾𝛾−1)

      (2.6) 
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We can integrate (2.5) to find the gas pressure 𝑝𝑝 as a function of time 𝑑𝑑: 
 

�
𝑑𝑑𝑝𝑝

𝑝𝑝(3𝛾𝛾−1)/2𝛾𝛾

𝑝𝑝

𝑝𝑝𝑖𝑖
= −𝐷𝐷� 𝑑𝑑𝑑𝑑

𝑡𝑡

0
 

 
so 
 

𝑑𝑑 = −
2𝛾𝛾

𝐷𝐷(1 − 𝛾𝛾) �𝑝𝑝
�1−𝛾𝛾2𝛾𝛾 � − 𝑝𝑝𝑖𝑖

�1−𝛾𝛾2𝛾𝛾 �
� 

 
or 
 

𝑑𝑑 = −
2𝛾𝛾

𝐷𝐷(1 − 𝛾𝛾) 𝑝𝑝𝑖𝑖
�1−𝛾𝛾2𝛾𝛾 �

��
𝑝𝑝
𝑝𝑝𝑖𝑖
�
�1−𝛾𝛾2𝛾𝛾 �

− 1�       (2.7) 

 
 
Substituting Eq. (2.6) for 𝐷𝐷 into (2.7) gives the following equation for the time 𝑑𝑑 in terms of the gas 
pressure 𝑝𝑝: 
 

𝑑𝑑 =
2𝑉𝑉 ��𝑝𝑝𝑝𝑝𝑖𝑖

�
�1−𝛾𝛾2𝛾𝛾 �

− 1�

(𝛾𝛾 − 1)𝐴𝐴𝑒𝑒�𝑇𝑇𝑖𝑖�𝛾𝛾𝛾𝛾 �
2

𝛾𝛾 + 1�
(𝛾𝛾+1)/(𝛾𝛾−1)

      (2.8) 

 
We can make this equation dimensionless. The initial speed of sound of the gas 𝑎𝑎𝑖𝑖 is 
 

𝑎𝑎𝑖𝑖 = �𝛾𝛾𝛾𝛾𝑇𝑇𝑖𝑖      (2.9) 
 
and a characteristic time scale 𝑑𝑑𝑐𝑐h𝑎𝑎𝑎𝑎 is 
 

𝑑𝑑𝑐𝑐ℎ𝑎𝑎𝑎𝑎 =
𝑉𝑉

𝐴𝐴𝑒𝑒𝑎𝑎𝑖𝑖
      (2.10) 

 
so we can normalise the time 𝑑𝑑 as follows 
 

𝑑𝑑+ =
𝑑𝑑

𝑑𝑑𝑐𝑐ℎ𝑎𝑎𝑎𝑎
      (2.11) 

 
The initial pressure of the gas 𝑝𝑝𝑖𝑖 is a characteristic pressure scale, so the gas pressure can be normalised 
as follows 
 

𝑝𝑝+ =
𝑝𝑝
𝑝𝑝𝑖𝑖

      (2.12) 
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Equation (2.8) can now be written as 
 

𝑑𝑑

� 𝑉𝑉
𝐴𝐴𝑒𝑒�𝛾𝛾𝛾𝛾𝑇𝑇𝑖𝑖

�
=

2
(𝛾𝛾 − 1) ��

𝑝𝑝
𝑝𝑝𝑖𝑖
�
�1−𝛾𝛾2𝛾𝛾 �

− 1�

�� 2
𝛾𝛾 + 1�

(𝛾𝛾+1)/(𝛾𝛾−1)
 

 
or 
 

𝑑𝑑+ =

2
(𝛾𝛾 − 1) �(𝑝𝑝

+)�
1−𝛾𝛾
2𝛾𝛾 � − 1�

�� 2
𝛾𝛾 + 1�

(𝛾𝛾+1)/(𝛾𝛾−1)
      (2.13) 

 
so 
 

𝑝𝑝+ = �1 + �
𝛾𝛾 − 1

2
��
𝛾𝛾 + 1

2
�
−(𝛾𝛾+1)
2(𝛾𝛾−1)

𝑑𝑑+�

−2𝛾𝛾
(𝛾𝛾−1)

      (2.14) 

 
  If we substitute the value for air 𝛾𝛾 = 1.4 into (2.13) and (2.14), we obtain 
 

𝑑𝑑+ =
(𝑝𝑝+)−

1
7 − 1

0.11574
      (2.15) 

 
and 
 

𝑝𝑝+ = [1 + 0.11574𝑑𝑑+]−7,      (2.16) 
 
respectively. 
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3 Choked isothermal discharge 
 
We shall now consider the rate at which the pressure in the vessel falls when the discharge is choked 
and isothermal. As before, the gas in the pressure vessel is assumed to be a perfect gas, so at any instant 
it obeys the equation of state 
 

𝑝𝑝𝑉𝑉 = 𝑑𝑑𝛾𝛾𝑇𝑇 
 
Once again we shall differentiate the equation of state with respect to time, but on this occasion with 𝑉𝑉, 
𝛾𝛾 and 𝑇𝑇 held constant: 
 

𝑉𝑉
𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝑇𝑇𝑖𝑖
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 
 
or 
 

𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

=
𝛾𝛾𝑇𝑇𝑖𝑖
𝑉𝑉
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

      (3.1) 
 
As before, we shall assume that the flow through the nozzle can be taken as quasi-steady. Substituting 
for the mass flow 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 from (1.4) gives 
 

𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

= −
𝑝𝑝𝐴𝐴𝑒𝑒
𝑉𝑉

�𝛾𝛾𝛾𝛾𝑇𝑇𝑖𝑖 �
2

𝛾𝛾 + 1
�

(𝛾𝛾+1) (𝛾𝛾−1)⁄

       (3.2) 

 
Note that the negative sign appears in front of the right-hand side of (3.2) because the volume 𝑉𝑉 is losing 
mass. The term �𝛾𝛾𝛾𝛾𝑇𝑇𝑖𝑖 in (3.2) is the initial speed of sound 𝑎𝑎𝑖𝑖, so 
 

𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

= −
𝑝𝑝𝐴𝐴𝑒𝑒𝑎𝑎𝑖𝑖
𝑉𝑉

��
2

𝛾𝛾 + 1
�

(𝛾𝛾+1) (𝛾𝛾−1)⁄

       (3.3) 

 
Equation (3.3) can be written 
 

𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

= −𝐶𝐶𝑝𝑝      (3.4) 
 
in which the constant 𝐶𝐶 is 
 

𝐶𝐶 =
𝐴𝐴𝑒𝑒𝑎𝑎𝑖𝑖
𝑉𝑉

��
2

𝛾𝛾 + 1
�

(𝛾𝛾+1)/(𝛾𝛾−1)

      (3.5) 

 
Integrating (3.4) gives 
 

�
𝑑𝑑𝑝𝑝
𝑝𝑝

𝑝𝑝

𝑝𝑝𝑖𝑖
= −𝐶𝐶� 𝑑𝑑𝑑𝑑

𝑡𝑡

0
 

 
or 
 

𝑑𝑑 = −
1
𝐶𝐶

ln
𝑝𝑝
𝑝𝑝𝑖𝑖

      (3.6) 
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Substituting (3.5) for 𝐶𝐶 into (3.6) gives 
 

𝑑𝑑 =
−𝑉𝑉

𝐴𝐴𝑒𝑒𝑎𝑎𝑖𝑖��
2

𝛾𝛾 + 1�
(𝛾𝛾+1)
(𝛾𝛾−1)

ln
𝑝𝑝
𝑝𝑝𝑖𝑖

      (3.7) 

 
As before, we shall introduce the normalised variables 𝑑𝑑+ and 𝑝𝑝+: 
 

𝑑𝑑+ =
𝑑𝑑

𝑑𝑑𝑐𝑐ℎ𝑎𝑎𝑎𝑎
,      𝑑𝑑𝑐𝑐ℎ𝑎𝑎𝑎𝑎 =

𝑉𝑉
𝐴𝐴𝑒𝑒𝑎𝑎𝑖𝑖

 

 
and 
 

𝑝𝑝+ =
𝑝𝑝
𝑝𝑝𝑖𝑖

 

 
Equation (3.7) can now be written as 
 

𝑑𝑑

� 𝑉𝑉
𝐴𝐴𝑒𝑒𝑎𝑎𝑖𝑖

�
=

−1

�� 2
𝛾𝛾 + 1�

(𝛾𝛾+1)
(𝛾𝛾−1)

ln
𝑝𝑝
𝑝𝑝𝑖𝑖

 

or 
 

𝑑𝑑+ =
−1

�� 2
𝛾𝛾 + 1�

(𝛾𝛾+1)
(𝛾𝛾−1)

ln 𝑝𝑝+      (3.8) 

 
so 
 

𝑝𝑝+ = Exp �−�
𝛾𝛾 + 1

2
�
−(𝛾𝛾+1)
2(𝛾𝛾−1)

𝑑𝑑+�       (3.9) 

 
If we substitute the value for air 𝛾𝛾 = 1.4 into (3.8) and (3.9), we obtain 
 

𝑑𝑑+ =
−ln(𝑝𝑝+)
0.57870

      (3.10) 
 
and 
 

𝑝𝑝+ = Exp[−0.57870𝑑𝑑+],      (3.11) 
 
respectively. 
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4 Unchoked adiabatic discharge 
 
We shall now consider the rate at which the pressure in the vessel falls when the discharge is unchoked 
and adiabatic. As for the choked discharge, we begin by differentiating the equation of state for a perfect 
gas with 𝑉𝑉 and 𝛾𝛾 held constant: 
 

𝑉𝑉
𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝛾𝛾
𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

+ 𝛾𝛾𝑇𝑇
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 
 
As before we shall substitute (2.4) for 𝑑𝑑𝑇𝑇/𝑑𝑑𝑑𝑑, but now we shall substitute (1.10) for 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 because the 
flow through the nozzle is unchoked:   
 

𝑉𝑉
𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝛾𝛾
𝛾𝛾 − 1
𝛾𝛾

𝑇𝑇
𝑝𝑝
𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

− 𝛾𝛾𝑇𝑇𝜌𝜌𝐴𝐴𝑎𝑎𝑒𝑒

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�⃓

2
𝛾𝛾 − 1 �

𝐴𝐴𝑒𝑒
𝐴𝐴 �

2
�� 𝑝𝑝𝑝𝑝𝑒𝑒

�
𝛾𝛾−1
𝛾𝛾 − 1�

� 𝑝𝑝𝑝𝑝𝑒𝑒
�
2
𝛾𝛾 − �𝐴𝐴𝑒𝑒𝐴𝐴 �

2
      (4.1) 

 
Note that the negative sign appears before the mass flow rate term in (4.1) because the volume 𝑉𝑉 is 
losing mass. The term 𝑑𝑑𝛾𝛾𝑇𝑇/𝑝𝑝 in (4.1) is equal to 𝑉𝑉 and the term 𝛾𝛾𝑇𝑇𝜌𝜌 in (4.1) is equal to 𝑝𝑝, so 
 

𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

= −
𝛾𝛾𝑝𝑝𝐴𝐴𝑎𝑎𝑒𝑒
𝑉𝑉

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�⃓

2
𝛾𝛾 − 1 �

𝐴𝐴𝑒𝑒
𝐴𝐴 �

2
�� 𝑝𝑝𝑝𝑝𝑒𝑒

�
𝛾𝛾−1
𝛾𝛾 − 1�

� 𝑝𝑝𝑝𝑝𝑒𝑒
�
2
𝛾𝛾 − �𝐴𝐴𝑒𝑒𝐴𝐴 �

2
      (4.2) 

 
As before, we shall introduce the normalised variables 𝑑𝑑+ and 𝑝𝑝+: 
 

𝑑𝑑+ =
𝑑𝑑

𝑑𝑑𝑐𝑐ℎ𝑎𝑎𝑎𝑎
,      𝑑𝑑𝑐𝑐ℎ𝑎𝑎𝑎𝑎 =

𝑉𝑉
𝐴𝐴𝑒𝑒𝑎𝑎𝑖𝑖

 

 
and 
 

𝑝𝑝+ =
𝑝𝑝
𝑝𝑝𝑖𝑖

 

 
so that equation (4.2) becomes 
 

𝑑𝑑𝑝𝑝+

𝑑𝑑𝑑𝑑+
= −𝛾𝛾𝑝𝑝+ �

𝑎𝑎𝑒𝑒
𝑎𝑎𝑖𝑖
�

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�

2
𝛾𝛾 − 1 ��

𝑝𝑝+
𝑝𝑝𝑒𝑒+
�
𝛾𝛾−1
𝛾𝛾
− 1�

�𝑝𝑝
+

𝑝𝑝𝑒𝑒+
�
2
𝛾𝛾
− �𝐴𝐴𝑒𝑒𝐴𝐴 �

2
     (4.3) 

 
From equation (1.2), 
 

𝑎𝑎𝑒𝑒
𝑎𝑎𝑖𝑖

= �
𝑝𝑝𝑒𝑒
𝑝𝑝𝑖𝑖
�
𝛾𝛾−1
2𝛾𝛾

= (𝑝𝑝𝑒𝑒+)
𝛾𝛾−1
2𝛾𝛾  
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Substituting into (4.3) gives 
 

𝑑𝑑𝑝𝑝+

𝑑𝑑𝑑𝑑+
= −𝛾𝛾𝑝𝑝+(𝑝𝑝𝑒𝑒+)

𝛾𝛾−1
2𝛾𝛾

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�

2
𝛾𝛾 − 1 ��

𝑝𝑝+
𝑝𝑝𝑒𝑒+
�
𝛾𝛾−1
𝛾𝛾
− 1�

�𝑝𝑝
+

𝑝𝑝𝑒𝑒+
�
2
𝛾𝛾
− �𝐴𝐴𝑒𝑒𝐴𝐴 �

2
= 𝑓𝑓(𝑝𝑝+)     (4.4) 

 
Integrating equation (4.4) from the time at which the discharge becomes unchoked gives 
 

� 𝑑𝑑𝑑𝑑+
𝑡𝑡+

𝑡𝑡𝑈𝑈𝑈𝑈𝑈𝑈ℎ
+

= � 𝑓𝑓(𝑝𝑝+)
𝑝𝑝+

𝑝𝑝𝑈𝑈𝑈𝑈𝑈𝑈ℎ
+

𝑑𝑑𝑝𝑝+ 

 
or 
 

𝑑𝑑+ − 𝑑𝑑𝑈𝑈𝑈𝑈𝑐𝑐ℎ+ = � 𝑓𝑓(𝑝𝑝+)
𝑝𝑝+

𝑝𝑝𝑈𝑈𝑈𝑈𝑈𝑈ℎ
+

𝑑𝑑𝑝𝑝+      (4.5) 

 
This is an equation for time in terms of the gas pressure, rather than vice versa, and the integral on the 
right-hand side of (4.5) is particularly complex. To make further progress, we decided to integrate (4.4) 
using a numerical method. An example of a complete calculation of choked adiabatic discharge 
followed by unchoked adiabatic discharge is given in Section 6. 
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5 Unchoked isothermal discharge 
 
We shall now consider the rate at which the pressure in the vessel falls when the discharge is unchoked 
and isothermal. As for the choked discharge, we begin by differentiating the equation of state for a 
perfect gas with 𝑉𝑉, 𝛾𝛾 and 𝑇𝑇 constant: 
 

𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

=
𝛾𝛾𝑇𝑇𝑖𝑖
𝑉𝑉
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 
 
Substituting (1.10) for 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 gives 
 

𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

= −
𝛾𝛾𝑇𝑇𝑖𝑖
𝑉𝑉
𝜌𝜌𝐴𝐴𝑎𝑎𝑒𝑒

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�⃓

2
𝛾𝛾 − 1 �

𝐴𝐴𝑒𝑒
𝐴𝐴 �

2
�� 𝑝𝑝𝑝𝑝𝑒𝑒

�
𝛾𝛾−1
𝛾𝛾 − 1�

� 𝑝𝑝𝑝𝑝𝑒𝑒
�
2
𝛾𝛾 − �𝐴𝐴𝑒𝑒𝐴𝐴𝑣𝑣

�
2

      (5.1) 

 
Note that the negative sign appears before the mass flow rate term in (5.1) because the volume V is 
losing mass. From equation (1.2), 
 

𝜌𝜌 = 𝜌𝜌𝑒𝑒 �
𝑝𝑝
𝑝𝑝𝑒𝑒
�
1
𝛾𝛾

      (5.2) 

 
Substituting (5.2) into (5.1) gives 
 

𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

= −
𝛾𝛾𝑇𝑇𝑖𝑖
𝑉𝑉
𝐴𝐴𝑎𝑎𝑒𝑒𝜌𝜌𝑒𝑒 �

𝑝𝑝
𝑝𝑝𝑒𝑒
�
1
𝛾𝛾

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�⃓

2
𝛾𝛾 − 1 �

𝐴𝐴𝑒𝑒
𝐴𝐴 �

2
�� 𝑝𝑝𝑝𝑝𝑒𝑒

�
𝛾𝛾−1
𝛾𝛾 − 1�

� 𝑝𝑝𝑝𝑝𝑒𝑒
�
2
𝛾𝛾 − �𝐴𝐴𝑒𝑒𝐴𝐴 �

2
      (5.3) 

 
Once again, we shall introduce the normalised variables 𝑑𝑑+ and 𝑝𝑝+: 
 

𝑑𝑑+ =
𝑑𝑑

𝑑𝑑𝑐𝑐ℎ𝑎𝑎𝑎𝑎
,      𝑑𝑑𝑐𝑐ℎ𝑎𝑎𝑎𝑎 =

𝑉𝑉
𝐴𝐴𝑒𝑒𝑎𝑎𝑖𝑖

 

 
and 
 

𝑝𝑝+ =
𝑝𝑝
𝑝𝑝𝑖𝑖
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The normalised form of equation (5.3) is 
 

𝑑𝑑𝑝𝑝+

𝑑𝑑𝑑𝑑+
= −

𝛾𝛾𝑇𝑇𝑖𝑖
𝑝𝑝𝑖𝑖

�
𝑎𝑎𝑒𝑒
𝑎𝑎𝑖𝑖
� 𝜌𝜌𝑒𝑒 �

𝑝𝑝+

𝑝𝑝𝑒𝑒+
�

1
𝛾𝛾

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�

2
𝛾𝛾 − 1 ��

𝑝𝑝+
𝑝𝑝𝑒𝑒+
�
𝛾𝛾−1
𝛾𝛾
− 1�

�𝑝𝑝
+

𝑝𝑝𝑒𝑒+
�
2
𝛾𝛾
− �𝐴𝐴𝑒𝑒𝐴𝐴 �

2
       (5.4) 

 
The term 𝛾𝛾𝑇𝑇𝑖𝑖/𝑝𝑝𝑖𝑖 in (5.4) is equal to 1/𝜌𝜌𝑖𝑖, and from equation (1.2), 
 

𝑎𝑎𝑒𝑒
𝑎𝑎𝑖𝑖

= �
𝑝𝑝𝑒𝑒
𝑝𝑝𝑖𝑖
�
𝛾𝛾−1
2𝛾𝛾

= (𝑝𝑝𝑒𝑒+)
𝛾𝛾−1
2𝛾𝛾  

 
so 
 

𝑑𝑑𝑝𝑝+

𝑑𝑑𝑑𝑑+
= −�

𝜌𝜌𝑒𝑒
𝜌𝜌𝑖𝑖
� �
𝑝𝑝+

𝑝𝑝𝑒𝑒+
�

1
𝛾𝛾

(𝑝𝑝𝑒𝑒+)
𝛾𝛾−1
2𝛾𝛾

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�

2
𝛾𝛾 − 1 ��

𝑝𝑝+
𝑝𝑝𝑒𝑒+
�
𝛾𝛾−1
𝛾𝛾
− 1�

�𝑝𝑝
+

𝑝𝑝𝑒𝑒+
�
2
𝛾𝛾
− �𝐴𝐴𝑒𝑒𝐴𝐴 �

2
       (5.5) 

 
From (1.2), 
 

𝜌𝜌𝑒𝑒
𝜌𝜌𝑖𝑖

= �
𝑝𝑝𝑒𝑒
𝑝𝑝𝑖𝑖
�
1
𝛾𝛾

= (𝑝𝑝𝑒𝑒+)
1
𝛾𝛾 

 
so 
 

𝑑𝑑𝑝𝑝+

𝑑𝑑𝑑𝑑+
= −(𝑝𝑝+)

1
𝛾𝛾(𝑝𝑝𝑒𝑒+)

𝛾𝛾−1
2𝛾𝛾

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�

2
𝛾𝛾 − 1 ��

𝑝𝑝+
𝑝𝑝𝑒𝑒+
�
𝛾𝛾−1
𝛾𝛾
− 1�

�𝑝𝑝
+

𝑝𝑝𝑒𝑒+
�
2
𝛾𝛾
− �𝐴𝐴𝑒𝑒𝐴𝐴 �

2
 = 𝑔𝑔(𝑝𝑝+)      (5.6) 

 
Integrating equation (5.6) from the time at which the discharge becomes unchoked gives 
 

� 𝑑𝑑𝑑𝑑+
𝑡𝑡+

𝑡𝑡𝑈𝑈𝑈𝑈𝑈𝑈ℎ
+

= � 𝑔𝑔(𝑝𝑝+)
𝑝𝑝+

𝑝𝑝𝑈𝑈𝑈𝑈𝑈𝑈ℎ
+

𝑑𝑑𝑝𝑝+ 

 
or 
 

𝑑𝑑+ − 𝑑𝑑𝑈𝑈𝑈𝑈𝑐𝑐ℎ+ = � 𝑔𝑔(𝑝𝑝+)
𝑝𝑝+

𝑝𝑝𝑈𝑈𝑈𝑈𝑈𝑈ℎ
+

𝑑𝑑𝑝𝑝+      (5.7) 

 
As in the case of adiabatic discharge, we have an equation for time in terms of the gas pressure, rather 
than vice versa, and the integral on the right-hand side of (5.7) is particularly complex. As before, we 
opted to use numerical integration. An example of a complete calculation of choked isothermal 
discharge followed by unchoked isothermal discharge is given in Section 7. 
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6 Worked example for adiabatic discharge 
 
An insulated cylindrical pressure vessel with a volume 𝑉𝑉 of 0.05 m3 and an inner diameter 𝐷𝐷 of 0.22 m 
contains air at an absolute pressure of 10 bar. The valve of the pressure vessel is opened allowing the 
air to escape to the atmosphere through a hole of diameter 𝐷𝐷𝑒𝑒 of 5 mm. Calculate the time taken for the 
pressure vessel to discharge completely. 
 

6.1 Choked flow 
 
The cross-sectional area of the pressure vessel is 
 

𝐴𝐴 =
𝜋𝜋𝐷𝐷2

4
=
𝜋𝜋 × 0.222

4
= 0.03801 m2 

 
and the cross-sectional area at the end of the nozzle is 
 

𝐴𝐴𝑒𝑒 =
𝜋𝜋𝐷𝐷𝑒𝑒2

4
=
𝜋𝜋 × 0.0052

4
= 19.635 × 10−6 m2 

 
For air the critical pressure ratio 𝑝𝑝𝑏𝑏/𝑝𝑝 is 0.52828. The back pressure 𝑝𝑝𝑏𝑏 is the atmospheric pressure and 
is equal to 1.01325 bar. Consequently, the discharge from the vessel will unchoke when the gas 
pressure falls to 1.01325 bar ÷ 0.52828 = 1.9180 bar. When normalised, this pressure is 
 

𝑝𝑝𝑈𝑈𝑈𝑈𝑐𝑐ℎ+ =
𝑝𝑝𝑈𝑈𝑈𝑈𝑐𝑐ℎ
𝑝𝑝𝑖𝑖

=
1.9180

10
= 0.19180 

 
The pressure vessel is insulated, so we can assume that the discharge is adiabatic. The gas is air, so the 
gas pressure during choked adiabatic discharge is given by equations (2.15) and (2.16): 
 

𝑑𝑑+ =
(𝑝𝑝+)−

1
7 − 1

0.11574
 

 
𝑝𝑝+ = [1 + 0.11574𝑑𝑑+]−7 

 
The value of 𝑑𝑑+ at which the discharge unchokes is therefore 
 

𝑑𝑑𝑈𝑈𝑈𝑈𝑐𝑐ℎ+ =
(𝑝𝑝𝑈𝑈𝑈𝑈𝑐𝑐ℎ+ )−

1
7 − 1

0.11574
=

0.19180−
1
7 − 1

0.11574
= 2.2986 

 
The speed of sound at the beginning of the discharge is 
 

𝑎𝑎𝑖𝑖 = �𝛾𝛾𝛾𝛾𝑇𝑇𝑖𝑖 = √1.4 × 287.055 × 298.15 = 346.15 m s−1 
 
and the characteristic timescale is 
 

𝑑𝑑𝑐𝑐ℎ𝑎𝑎𝑎𝑎 =
𝑉𝑉

𝐴𝐴𝑒𝑒𝑎𝑎𝑖𝑖
=

0.05
19.635 × 10−6 × 346.15

= 7.3566 s 

 
The time at which the discharge unchokes is therefore 
 

𝑑𝑑𝑈𝑈𝑈𝑈𝑐𝑐ℎ = 𝑑𝑑𝑈𝑈𝑈𝑈𝑐𝑐ℎ+ × 𝑑𝑑𝑐𝑐ℎ𝑎𝑎𝑎𝑎 = 2.2986 × 7.3566 = 16.910 s 
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In the web application the period 0 to 𝑑𝑑𝑈𝑈𝑈𝑈𝑐𝑐ℎ+  is divided into 100 intervals and 𝑝𝑝+ is calculated after each 
interval. The dimensional values 𝑑𝑑 and 𝑝𝑝 are then calculated and plotted on the user interface so that the 
user can see how the rate of discharge varies with time. Table 1 shows the first and last few values of 
𝑑𝑑+, 𝑝𝑝+, 𝑑𝑑 and 𝑝𝑝. 
 
 
Table 1  Calculated pressure against time for choked adiabatic discharge 

No. 𝑑𝑑+ 𝑝𝑝+ 𝑑𝑑 [s] 𝑝𝑝 [bar] 
0 0.0 1.0 0.0 10.0 
1 0.022986 0.98157 0.16910 9.8157 
2 0.045972 0.96353 0.33820 9.6353 
. . . . . 
. . . . . 
. . . . . 

98 2.2526 0.19755 16.572 1.9755 
99 2.2756 0.19465 16.741 1.9465 

100 2.2986 0.19180 16.910 1.9180 
 
 

6.2 Unchoked flow 
 

6.2.1 Fourth-order Runge-Kutta method 
 
We shall use the classical fourth-order Runge-Kutta (RK4) method to integrate equation (4.4) 
numerically in steps of h = Δ𝑑𝑑+ beginning from (𝑑𝑑𝑈𝑈𝑈𝑈𝑐𝑐ℎ+ , 𝑝𝑝𝑈𝑈𝑈𝑈𝑐𝑐ℎ+ ). 
 
The classical RK4 method is one of several methods that can be used to solve first-order differential 
equations of the form: 
 

𝑑𝑑𝑦𝑦
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑑𝑑,𝑦𝑦)      (6.1) 
 
There are many variations of the Runge-Kutta method, but in all cases equation (6.1) is cast in the form 
 

𝑦𝑦𝑖𝑖+1 = 𝑦𝑦𝑖𝑖 + ∅(𝑑𝑑𝑖𝑖,𝑦𝑦𝑖𝑖 ,ℎ)ℎ 
 
The function ∅(𝑑𝑑𝑖𝑖,𝑦𝑦𝑖𝑖 ,ℎ) is called an increment function. It can be regarded as a representative slope 
over the interval ℎ. In the classical RK4 method the increment function is 
 

∅(𝑑𝑑𝑖𝑖,𝑦𝑦𝑖𝑖 , ℎ) =
1
6

(𝑘𝑘1 + 2𝑘𝑘2 + 2𝑘𝑘3 + 𝑘𝑘4) 
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where 
 

𝑘𝑘1 = 𝑓𝑓(𝑑𝑑𝑖𝑖 ,𝑦𝑦𝑖𝑖) 
 

𝑘𝑘2 = 𝑓𝑓 �𝑑𝑑𝑖𝑖 +
1
2
ℎ,𝑦𝑦𝑖𝑖 +

1
2
ℎ𝑘𝑘1� 

 

𝑘𝑘3 = 𝑓𝑓 �𝑑𝑑𝑖𝑖 +
1
2
ℎ,𝑦𝑦𝑖𝑖 +

1
2
ℎ𝑘𝑘2� 

 
𝑘𝑘4 = 𝑓𝑓(𝑑𝑑𝑖𝑖 + ℎ,𝑦𝑦𝑖𝑖 + ℎ𝑘𝑘3) 

 
The 𝑘𝑘’s can only be evaluated in the order shown because each 𝑘𝑘 contains all the 𝑘𝑘’s further up the 
order. When applied to the pressure vessel the RK4 method becomes 
 

𝑑𝑑𝑖𝑖+1+ = 𝑑𝑑𝑖𝑖+ + ∅(𝑝𝑝𝑖𝑖+,ℎ)ℎ 
 

∅(𝑝𝑝𝑖𝑖+,ℎ) =
1
6

(𝑘𝑘1 + 2𝑘𝑘2 + 2𝑘𝑘3 + 𝑘𝑘4) 
 

𝑘𝑘1 = 𝑓𝑓(𝑝𝑝𝑖𝑖+) 
 

𝑘𝑘2 = 𝑓𝑓 �𝑝𝑝𝑖𝑖+ +
1
2
ℎ� 

 

𝑘𝑘3 = 𝑓𝑓 �𝑝𝑝𝑖𝑖+ +
1
2
ℎ� 

 
𝑘𝑘4 = 𝑓𝑓(𝑝𝑝𝑖𝑖+ + ℎ) 

 
where 𝑓𝑓 is the right-hand side of (4.4). 
 

6.2.2 Normalised time-step h 
 
We can use equation (4.4) to determine 𝑑𝑑𝑝𝑝+/𝑑𝑑𝑑𝑑+ at the start of the period of unchoked flow. 
 

�
𝑑𝑑𝑝𝑝+

𝑑𝑑𝑑𝑑+�𝑈𝑈𝑈𝑈𝑐𝑐ℎ
= −𝛾𝛾𝑝𝑝+(𝑝𝑝𝑒𝑒+)

𝛾𝛾−1
2𝛾𝛾

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�

2
𝛾𝛾 − 1 ��

𝑝𝑝+
𝑝𝑝𝑒𝑒+
�
𝛾𝛾−1
𝛾𝛾
− 1�

�𝑝𝑝
+

𝑝𝑝𝑒𝑒+
�
2
𝛾𝛾
− �𝐴𝐴𝑒𝑒𝐴𝐴 �

2
 

 
The normalised exit pressure 𝑝𝑝𝑒𝑒+ is 
 

𝑝𝑝𝑒𝑒+ = 𝑝𝑝𝑏𝑏+ =
𝑝𝑝𝑏𝑏
𝑝𝑝𝑖𝑖

=
1.01325

10
= 0.101325 

 
and 𝑝𝑝+ = 𝑝𝑝𝑈𝑈𝑈𝑈𝑐𝑐ℎ+ = 0.19180, so 
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�
𝑑𝑑𝑝𝑝+

𝑑𝑑𝑑𝑑+�𝑈𝑈𝑈𝑈𝑐𝑐ℎ
= −1.4 × 0.19180 × 0.101325

1
7

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�

5 �� 0.19180
0.101325�

1
3.5 − 1�

� 0.19180
0.101325�

2
1.4 − �19.635 × 10−6

0.03801 �
2

= −0.12274 

 
We used this pressure gradient to specify the normalised time-step h = Δ𝑑𝑑+ for the period of unchoked 
flow. During unchoked flow the normalised pressure 𝑝𝑝+ falls from 𝑝𝑝𝑈𝑈𝑈𝑈𝑐𝑐ℎ+  to 𝑝𝑝𝑒𝑒+. We divided the pressure 
difference 𝑝𝑝𝑒𝑒+ − 𝑝𝑝𝑈𝑈𝑈𝑈𝑐𝑐ℎ+  into 100 intervals Δ𝑝𝑝+, then divided Δ𝑝𝑝+ by (𝑑𝑑𝑝𝑝+/𝑑𝑑𝑑𝑑+)𝑈𝑈𝑈𝑈𝑐𝑐h to obtain h: 
 

∆𝑝𝑝+ =
𝑝𝑝𝑒𝑒+ − 𝑝𝑝𝑈𝑈𝑈𝑈𝑐𝑐ℎ+

100
=

0.101325− 0.19180
100

= −0.00090475 
 

ℎ = ∆𝑑𝑑+ =
∆𝑝𝑝+

(𝑑𝑑𝑝𝑝+ 𝑑𝑑𝑑𝑑+⁄ )𝑈𝑈𝑈𝑈𝑐𝑐ℎ
=
−0.00090475
−0.12274

= 0.0073713 

 
The 𝑝𝑝+/𝑝𝑝+𝑒𝑒 terms in (4.4) must not be allowed to fall below 1, otherwise the right-hand side of (4.4) 
will contain the square root of a negative number. To prevent this from happening, the iterations of the 
RK4 method were only allowed to continue provided that: 
 

𝑝𝑝𝑖𝑖+1+ > 𝑝𝑝𝑒𝑒 − ℎ × 𝑓𝑓(𝑝𝑝𝑈𝑈𝑈𝑈𝑐𝑐ℎ+ ) 
 
where 𝑓𝑓 is the right-hand side of (4.4). Note that h is positive and 𝑓𝑓 is negative. Once this criterion was 
breeched, the returned value 𝑝𝑝𝑖𝑖+1+  was used to calculate the total normalised discharge time 𝑑𝑑𝑒𝑒+ from 
 

𝑑𝑑𝑒𝑒+ = 𝑑𝑑𝑖𝑖+1+ + (𝑝𝑝𝑒𝑒+ − 𝑝𝑝𝑖𝑖+1+ ) ×
ℎ

�𝑝𝑝𝑖𝑖+1+ − 𝑝𝑝𝑖𝑖+�
 

 
(see Figure 4). 
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Figure 4  Calculation of the normalised total discharge time 

 
 
 
 
 
  

𝑝𝑝𝑖𝑖+,�
𝑑𝑑𝑝𝑝+

𝑑𝑑𝑑𝑑+�𝑖𝑖
 

𝑝𝑝𝑖𝑖−1+ ,  �
𝑑𝑑𝑝𝑝+

𝑑𝑑𝑑𝑑+�𝑖𝑖−1
 

𝑝𝑝𝑖𝑖+1+  

𝑝𝑝𝑒𝑒+ 

𝑝𝑝𝑒𝑒+ − ℎ�
𝑑𝑑𝑝𝑝+

𝑑𝑑𝑑𝑑+�𝑈𝑈𝑈𝑈𝑐𝑐ℎ
 

ℎ ℎ ℎ ℎ 
𝑑𝑑𝑖𝑖−1+  𝑑𝑑𝑖𝑖+ 𝑑𝑑𝑖𝑖+1+  𝑑𝑑𝑒𝑒+ 

𝑝𝑝+ 

𝑑𝑑+ 

ℎ 
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Table 2 shows the first and last few values of  𝑑𝑑+, 𝑝𝑝+, 𝑑𝑑 and 𝑝𝑝 for unchoked flow. The discharge of the 
pressure vessel is complete after 27.6 s. 
 
 
Table 2  Calculated pressure against time for unchoked adiabatic discharge 

No. 𝑑𝑑+ 𝑝𝑝+ 𝑑𝑑 [s] 𝑝𝑝 [bar] 
0 2.2986 0.19180 16.910 1.9180 
1 2.3060 0.19090 16.964 1.9090 
2 2.3134 0.19000 17.019 1.9000 
. . . . . 
. . . . . 
. . . . . 

185 3.6624 0.10234 26.942 1.0234 
186 3.6697 0.10225 26.997 1.0225 
187 3.6771 0.10217 27.051 1.0217 
188 3.7508 0.10132 27.593 1.0132 

 
 
Figure 5 shows the user interface of the web application when it is set up for this example. The fall in 
pressure when the discharge is adiabatic is given by the red curve in Figure 5. The blue curve gives the 
fall in pressure when the discharge is isothermal. 
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Figure 5  User interface for this example 
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7 Worked example for isothermal discharge 
 
An uninsulated cylindrical pressure vessel with a volume 𝑉𝑉 of 0.05 m3 and an inner diameter 𝐷𝐷 of 
0.22 m contains air at an absolute pressure of 10 bar. The valve of the pressure vessel is opened 
allowing the air to escape to the atmosphere through a hole of diameter 𝐷𝐷𝑒𝑒 of 0.5 mm. Calculate the 
time taken for the pressure vessel to discharge completely. 
 

7.1 Choked flow 
 
The cross-sectional area of the pressure vessel is 
 

𝐴𝐴 =
𝜋𝜋𝐷𝐷2

4
=
𝜋𝜋 × 0.222

4
= 0.03801 m2 

 
and the cross-sectional area at the end of the nozzle is 
 

𝐴𝐴𝑒𝑒 =
𝜋𝜋𝐷𝐷𝑒𝑒2

4
=
𝜋𝜋 × 0.00052

4
= 0.19635 × 10−6 m2 

 
For air the critical pressure ratio 𝑝𝑝𝑏𝑏/𝑝𝑝 is 0.5283. The back pressure 𝑝𝑝𝑏𝑏 is the atmospheric pressure and 
is equal to 1.01325 bar. Consequently, the discharge from the vessel will unchoke when the gas 
pressure falls to 1.01325 bar ÷ 0.52828 = 1.9180 bar. When normalised, this pressure is 
 

𝑝𝑝𝑈𝑈𝑈𝑈𝑐𝑐ℎ+ =
𝑝𝑝𝑈𝑈𝑈𝑈𝑐𝑐ℎ
𝑝𝑝𝑖𝑖

=
1.9180

10
= 0.19180 

 
The pressure vessel is uninsulated and the exit hole is so small that the discharge is likely to be slow. 
Consequently, we can assume that the discharge is isothermal. The gas is air, so the gas pressure during 
choked isothermal discharge is given by equations (3.8) and (3.9): 
 

𝑑𝑑+ =
−ln𝑝𝑝+

0.57870
 

 
𝑝𝑝+ = Exp[−0.57870𝑑𝑑+] 

 
The value of 𝑑𝑑+ at which the discharge unchokes is therefore 
 

𝑑𝑑𝑈𝑈𝑈𝑈𝑐𝑐ℎ+ =
− ln𝑝𝑝𝑈𝑈𝑈𝑈𝑐𝑐ℎ+

0.57870
=
− ln 0.19180

0.57870
= 2.8535 

 
The speed of sound in the pressure vessel at the beginning of the discharge is the same as for the 
adiabatic discharge. The characteristic timescale is 
 

𝑑𝑑𝑐𝑐ℎ𝑎𝑎𝑎𝑎 =
𝑉𝑉

𝐴𝐴𝑒𝑒𝑎𝑎𝑖𝑖
=

0.05
0.19635 × 10−6 × 346.15

= 735.66 s 

 
The time at which the discharge unchokes is therefore 
 

𝑑𝑑𝑈𝑈𝑈𝑈𝑐𝑐ℎ = 𝑑𝑑𝑈𝑈𝑈𝑈𝑐𝑐ℎ+ × 𝑑𝑑𝑐𝑐ℎ𝑎𝑎𝑎𝑎 = 2.8535 × 735.66 = 2099.2 s 
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In the web application the period 0 to 𝑑𝑑𝑈𝑈𝑈𝑈𝑐𝑐ℎ+  is divided into 100 intervals and 𝑝𝑝+ is calculated after each 
interval. The dimensional values 𝑑𝑑 and 𝑝𝑝 are then calculated and plotted on the user interface so that the 
user can see how the rate of discharge varies with time. Table 3 shows the first and last few values of 
𝑑𝑑+, 𝑝𝑝+, 𝑑𝑑 and 𝑝𝑝 for the choked isothermal discharge. 
 
 
Table 3  Calculated pressure against time for choked isothermal discharge 

No. 𝑑𝑑+ 𝑝𝑝+ 𝑑𝑑 [s] 𝑝𝑝 [bar] 
0 0.0 1.0 0.0 10.0 
1 0.028635 0.98357 21.065 9.8357 
2 0.057269 0.96740 42.130 9.6740 
. . . . . 
. . . . . 
. . . . . 

98 2.7964 0.19824 2057.2 1.9824 
99 2.8249 0.19499 2078.2 1.9499 

100 2.8535 0.19180 2099.2 1.9180 
 
 

7.2 Unchoked flow 
 
We shall use the classical fourth-order Runge-Kutta (RK4) method to integrate equation (5.6) 
numerically in steps of h = Δ𝑑𝑑+ beginning from (𝑑𝑑𝑈𝑈𝑈𝑈𝑐𝑐ℎ+ ,  𝑝𝑝𝑈𝑈𝑈𝑈𝑐𝑐ℎ+ ). 
 
We can use equation (5.6) to determine 𝑑𝑑𝑝𝑝+/𝑑𝑑𝑑𝑑+ at the start of the period of unchoked flow. 
 

�
𝑑𝑑𝑝𝑝+

𝑑𝑑𝑑𝑑+�𝑈𝑈𝑈𝑈𝑐𝑐ℎ
= −(𝑝𝑝+)

1
𝛾𝛾(𝑝𝑝𝑒𝑒+)

𝛾𝛾−1
2𝛾𝛾

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�

2
𝛾𝛾 − 1 ��

𝑝𝑝+
𝑝𝑝𝑒𝑒+
�
𝛾𝛾−1
𝛾𝛾
− 1�

�𝑝𝑝
+

𝑝𝑝𝑒𝑒+
�
2
𝛾𝛾
− �𝐴𝐴𝑒𝑒𝐴𝐴 �

2
  

 
The normalised exit pressure 𝑝𝑝𝑒𝑒+ is 
 

𝑝𝑝𝑒𝑒+ = 𝑝𝑝𝑏𝑏+ =
𝑝𝑝𝑏𝑏
𝑝𝑝𝑖𝑖

=
1.01325

10
= 0.101325 

 
and 𝑝𝑝+ = 𝑝𝑝𝑈𝑈𝑈𝑈𝑐𝑐ℎ+ = 0.19180, so 
 

�
𝑑𝑑𝑝𝑝+

𝑑𝑑𝑑𝑑+�𝑈𝑈𝑈𝑈𝑐𝑐ℎ
= −0.19180

1
1.4 × 0.101325

1
7

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�

5 �� 0.19180
0.101325�

1
3.5 − 1�

� 0.19180
0.101325�

2
1.4 − �0.19635 × 10−6

0.03801 �
2

= −0.14053 
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We used this pressure gradient to specify the normalised time-step h = Δ𝑑𝑑+ for the period of unchoked 
flow. During unchoked flow the normalised pressure 𝑝𝑝+ falls from 𝑝𝑝𝑈𝑈𝑈𝑈𝑐𝑐ℎ+  to 𝑝𝑝𝑒𝑒+. We divided this 
pressure difference into 100 intervals Δ𝑝𝑝+, then divided Δ𝑝𝑝+ by (𝑑𝑑𝑝𝑝+/𝑑𝑑𝑑𝑑+)𝑈𝑈𝑈𝑈𝑐𝑐h to obtain h: 
 

∆𝑝𝑝+ =
𝑝𝑝𝑒𝑒+ − 𝑝𝑝𝑈𝑈𝑈𝑈𝑐𝑐ℎ+

100
=

0.101325− 0.19180
100

= −0.00090475 
 

ℎ = ∆𝑑𝑑+ =
∆𝑝𝑝+

(𝑑𝑑𝑝𝑝+ 𝑑𝑑𝑑𝑑+⁄ )𝑈𝑈𝑈𝑈𝑐𝑐ℎ
=
−0.00090475
−0.14053

= 0.0064383 

 
The normalised total discharge time is calculated in the same way as for the adiabatic flow (see Section 
6.2.2). 
 
Table 4 shows the first and last few values of  𝑑𝑑+, 𝑝𝑝+, 𝑑𝑑 and 𝑝𝑝 for unchoked flow. The discharge of the 
pressure vessel is complete after 2935 s. 
 
 
Table 4  Calculated pressure against time for unchoked isothermal discharge 

No. 𝑑𝑑+ 𝑝𝑝+ 𝑑𝑑 [s] 𝑝𝑝 [bar] 
0 2.8535 0.19180 2099.2 1.9180 
1 2.8599 0.19090 2103.9 1.9090 
2 2.8663 0.19000 2108.6 1.9000 
. . . . . 
. . . . . 
. . . . . 

166 3.9222 0.10240 2885.4 1.0240 
167 3.9286 0.10229 2890.2 1.0229 
168 3.9351 0.10219 2894.9 1.0219 
169 3.9894 0.10132 2934.8 1.0132 

 
 
Figure 6 shows the user interface of the web application when it is set up for this example. The fall in 
pressure when the discharge is isothermal is given by the blue curve in Figure 6. The red curve gives 
the fall in pressure when the discharge is adiabatic. 
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Figure 6  User interface for this example 
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